Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.057
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38663991

RESUMEN

BACKGROUND AND PURPOSE: Acute mountain sickness is a series of brain-centered symptoms that occur when rapidly ascending to high altitude. Predicting acute mountain sickness before high-altitude exposure is crucial for protecting susceptible individuals. The present study aimed to evaluate the feasibility of predicting acute mountain sickness after high-altitude exposure by using multimodal brain MR imaging features measured at sea level. MATERIALS AND METHODS: We recruited 45 healthy sea-level residents who flew to the Qinghai-Tibet Plateau (3650 m). We conducted T1-weighted structural MR imaging, resting-state fMRI, and arterial spin-labeling perfusion MR imaging both at sea level and high altitude. Acute mountain sickness was diagnosed for 5 days using Lake Louise Scoring. Logistic regression with Least Absolute Shrinkage and Selection Operator logistic regression was performed for predicting acute mountain sickness using sea-level MR imaging features. We also validated the predictors by using MR images obtained at high altitude. RESULTS: The incidence rate of acute mountain sickness was 80.0%. The model achieved an area under the receiver operating characteristic curve of 86.4% (sensitivity = 77.8%, specificity = 100.0%, and P < .001) in predicting acute mountain sickness At sea level, valid predictors included fractional amplitude of low-frequency fluctuations (fALFF) and degree centrality from resting-state fMRI, mainly distributed in the somatomotor network. We further learned that the acute mountain sickness group had lower levels of fALFF in the somatomotor network at high altitude, associated with smaller changes in CSF volume and higher Lake Louise Scoring, specifically relating to fatigue and clinical function. CONCLUSIONS: Our study found that the somatomotor network function detected by sea-level resting-state fMRI was a crucial predictor for acute mountain sickness and further validated its pathophysiologic impact at high altitude. These findings show promise for pre-exposure prediction, particularly for individuals in need of rapid ascent, and they offer insight into the potential mechanism of acute mountain sickness.

3.
BMC Emerg Med ; 24(1): 69, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649815

RESUMEN

OBJECTIVE: This survey aims to comprehensively understand occupational burnout among pre-hospital emergency medical personnel and explore associated risk factors. METHODS: A cross-sectional online survey using a census method was conducted between 15 July, 2023, and ends on 14 August, 2023, in Chengdu, SiChuan province, China. The questionnaire included general demographic information, the Maslach Burnout Inventory-General Survey (MBI-GS) with 15 items, and the Fatigue Scale-14 (FS-14) with 14 items. Univariate analysis was conducted on all variables, followed by multivariate logistic regression models to examine the associations between occupational burnout and the risk factors. RESULTS: A total of 2,299 participants,99.57% completed the survey effectively The participants were from 166 medical institutions in Chengdu, comprising 1,420 nurses (61.50%) and 889 clinical doctors (38.50%). A total of 33.36% participants experienced burnout, predominantly mild (30.27%), followed by moderate (2.78%) and severe (0.3%). Physicians, higher fatigue scores, age, work experience appeared to be related to burnout. Logistic regression models revealed that individuals aged over 50 were less prone to experience burnout compared to medical staff aged 18-30 (OR: 0.269, 95% CI: 0.115-0.627, p = 0.002). Physicians were more prone to experience burnout compared to nursing staff (OR: 0.690, 95% CI: 0.531-0.898, p = 0.006). Those with 0-5 years of experience were more prone to experience burnout compared to those with 6-10 years or over 15 years of experience (OR: 0.734, 95% CI: 0.547-0.986, p = 0.040; OR: 0.559, 95% CI: 0.339-0.924, p = 0.023). Additionally, for each 1-point increase in the fatigue score, the likelihood of burnout in medical staff increased by 1.367 times (OR: 1.367, 95% CI: 1.323-1.412, p < 0.0001). CONCLUSION: Pre-hospital emergency medical personnel demonstrate a notable prevalence of mild job burnout. These results provide a groundwork for future focus on the various stages of job burnout within pre-hospital emergency staff, alerting hospital and departmental managers to promptly address the mental well-being of their personnel and intervene as needed.


Asunto(s)
Agotamiento Profesional , Humanos , Agotamiento Profesional/epidemiología , Agotamiento Profesional/psicología , Estudios Transversales , Masculino , Femenino , Adulto , China/epidemiología , Persona de Mediana Edad , Encuestas y Cuestionarios , Factores de Riesgo , Adulto Joven , Auxiliares de Urgencia/psicología , Fatiga/epidemiología , Médicos/psicología , Adolescente , Modelos Logísticos
4.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667188

RESUMEN

SPR biosensors have been extensively used for investigating protein-protein interactions. However, in conventional surface plasmon resonance (SPR) biosensors, detection is limited by the Brownian-motion-governed diffusion process of sample molecules in the sensor chip, which makes it challenging to detect biomolecule interactions at ultra-low concentrations. Here, we propose a highly sensitive SPR imaging biosensor which exploits the coffee ring effect (CRE) for in situ enrichment of molecules on the sensing surface. In addition, we designed a wavelength modulation system utilizing two LEDs to reduce the system cost and enhance the detection speed. Furthermore, a detection limit of 213 fM is achieved, which amounts to an approximately 365 times improvement compared to traditional SPR biosensors. With further development, we believe that this SPR imaging system with high sensitivity, less sample consumption, and faster detection speed can be readily applied to ultra-low-concentration molecular detection and interaction analysis.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Límite de Detección
5.
Phys Chem Chem Phys ; 26(15): 12199-12209, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591717

RESUMEN

The photocatalytic nitrogen reduction reaction (pNRR) is a clean technology that converts H2O and N2 into NH3 under environmental conditions using inexhaustible sunlight. Herein, we designed a novel two-dimensional (2D) Janus TiSiGeN4 structure and evaluated the pNRR performance of the structure with the presence of nitrogen vacancies at different positions using density functional theory (DFT) calculations. The intrinsic dipoles in the Janus TiSiGeN4 structure generate a built-in electric field, which promotes the migration of photogenerated electrons and holes towards the (001) and (00-1) surfaces, respectively, to achieve efficient charge separation. For the pNRR, the Si atoms exposed after the formation of top N vacancies can realize the efficient activation of N2 through the "acceptance-donation" mechanism, while the presence of middle N vacancies not only suppresses the hydrogen evolution reaction, a competition reaction, but also lowers the reaction barrier for the protonation of N atoms. The limiting potential of TiSiGeN4 with the coexistence of both top and middle N vacancies (TiSiGeN4-VN-mt) is as low as -0.44 V. In addition, the introduction of N vacancies generates defect levels, narrowing the band gap and improving the light response. This work provides theoretical guidance for the design of efficient pNRR photocatalysts under mild conditions.

6.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119715, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583782

RESUMEN

Ovarian cancer (OvCa) is characterized by early metastasis and high mortality rates, underscoring the need for deeper understanding of these aspects. This study explores the role of glucose transporter 3 (GLUT3) driven by zinc finger E-box-binding homeobox 1 (ZEB1) in OvCa progression and metastasis. Specifically, this study explored whether ZEB1 promotes glycolysis and assessed the potential involvement of GLUT3 in this process in OvCa cells. Our findings revealed that ZEB1 and GLUT3 were excessively expressed and closely correlated in OvCa. Mechanistically, ZEB1 activates the transcription of GLUT3 by binding to its promoter region. Increased expression of GLUT3 driven by ZEB1 dramatically enhances glycolysis, and thus fuels Warburg Effect to promote OvCa progression and metastasis. Consistently, elevated ZEB1 and GLUT3 expression in clinical OvCa is correlated with poor prognosis, reinforcing the profound contribution of ZEB1-GLUT3 axis to OvCa. These results suggest that activation of GLUT3 expression by ZEB1 is crucial for the proliferation and metastasis of OvCa via fueling glycolysis, shedding new light on OvCa treatment.

7.
Int J Biol Macromol ; 267(Pt 2): 131608, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38621558

RESUMEN

Amidoxime-based fiber adsorbents hold significant promise for uranium extraction. However, a notable issue is that these adsorbents primarily originate from synthetic polymer materials, which, aside from providing good mechanical support, have no other functions. In recent study, we shifted our focus to silk fiber (SF), a natural protein fiber known for its unique core-shell structure and rich amino acids. The shell layer, due to its abundant functional groups, makes it easily modifiable, while the core layer provides excellent mechanical strength. Leveraging these inherent properties, an amidoxime-based fiber adsorbent was developed. This adsorbent utilizes amino and carboxyl groups for enhanced performance synergistically. This method involves establishing uranium affinity sites on the outer sericin layer of SF via chemical initiation of graft polymerization (CIGP) and amidoximation (SF-g-PAO). The water absorption ratio of SF-g-PAO is as high as 601.16 % (DG = 97.17 %). Besides, SF-g-PAO demonstrates an exceptional adsorption capacity of 15.69 mg/g in simulated seawater, achieving a remarkable removal rate of uranyl ions at 95.06 %. It can withstand a minimum of five adsorption-elution cycles. Over a 4-week period in natural seawater, SF-g-PAO displayed an adsorption capacity of 4.95 mg/g. Furthermore, SF-g-PAO also exhibits impressive uranium removal efficiency in real nuclear wastewater, with a removal rate of 63 % in just 15 min and a final removal rate of 90 %. It is hoped that this SF-g-PAO, prepared through this straightforward method and characterized by the synergistic action of amino and carboxyl groups, can offer innovative insights into the development of uranium extraction adsorbents.

8.
Small ; : e2401797, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577831

RESUMEN

The interfacial 2D/3D perovskite heterostructures have attracted extensive attention due to their unique ability to combine the high stability of 2D perovskites with the remarkable efficiency of 3D perovskites. However, the carrier transport mechanism within the 2D/3D perovskite heterostructures remains unclear. In this study, the carrier transport dynamics in 2D/3D perovskite heterostructures through a variety of time-resolved spectroscopic measurements is systematically investigated. Time-resolved photoluminescence results reveal nanosecond hole transfer from the 3D to 2D perovskites, with enhanced efficiency through the introduction of fluorine atoms on the phenethylammonium (PEA) cation. Transient absorption measurements unveil the ultrafast picosecond electron and energy transfer from 2D to 3D perovskites. Furthermore, it is demonstrated that the positioning of fluorination on the PEA cations effectively regulates the efficiency of charge and energy transfer within the heterostructures. These insightful findings shed light on the underlying carrier transport mechanism and underscore the critical role of cation fluorination in optimizing carrier transport within 2D/3D perovskite heterostructure-based devices.

9.
World J Psychiatry ; 14(3): 445-455, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38617985

RESUMEN

BACKGROUND: Epidemiological studies have revealed a correlation between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D). Insulin resistance in the brain is a common feature in patients with T2D and AD. KAT7 is a histone acetyltransferase that participates in the modulation of various genes. AIM: To determine the effects of KAT7 on insulin patients with AD. METHODS: APPswe/PS1-dE9 double-transgenic and db/db mice were used to mimic AD and diabetes, respectively. An in vitro model of AD was established by Aß stimulation. Insulin resistance was induced by chronic stimulation with high insulin levels. The expression of microtubule-associated protein 2 (MAP2) was assessed using immunofluorescence. The protein levels of MAP2, Aß, dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), IRS-1, p-AKT, total AKT, p-GSK3ß, total GSK3ß, DYRK1A, and KAT7 were measured via western blotting. Accumulation of reactive oxygen species (ROS), malondialdehyde (MDA), and SOD activity was measured to determine cellular oxidative stress. Flow cytometry and CCK-8 assay were performed to evaluate neuronal cell death and proliferation, respectively. Relative RNA levels of KAT7 and DYRK1A were examined using quantitative PCR. A chromatin immunoprecipitation assay was conducted to detect H3K14ac in DYRK1A. RESULTS: KAT7 expression was suppressed in the AD mice. Overexpression of KAT7 decreased Aß accumulation and MAP2 expression in AD brains. KAT7 overexpression decreased ROS and MDA levels, elevated SOD activity in brain tissues and neurons, and simultaneously suppressed neuronal apoptosis. KAT7 upregulated levels of p-AKT and p-GSK3ß to alleviate insulin resistance, along with elevated expression of DYRK1A. KAT7 depletion suppressed DYRK1A expression and impaired H3K14ac of DYRK1A. HMGN1 overexpression recovered DYRK1A levels and reversed insulin resistance caused by KAT7 depletion. CONCLUSION: We determined that KAT7 overexpression recovered insulin sensitivity in AD by recruiting HMGN1 to enhance DYRK1A acetylation. Our findings suggest that KAT7 is a novel and promising therapeutic target for the resistance in AD.

10.
Front Hum Neurosci ; 18: 1372985, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638803

RESUMEN

Introduction: Microstate analysis enables the characterization of quasi-stable scalp potential fields on a sub-second timescale, preserving the temporal dynamics of EEG and spatial information of scalp potential distributions. Owing to its capacity to provide comprehensive pathological insights, it has been widely applied in the investigation of schizophrenia (SCZ). Nevertheless, previous research has primarily concentrated on differences in individual microstate temporal characteristics, neglecting potential distinctions in microstate semantic sequences and not fully considering the issue of the universality of microstate templates between SCZ patients and healthy individuals. Methods: This study introduced a microstate semantic modeling analysis method aimed at schizophrenia recognition. Firstly, microstate templates corresponding to both SCZ patients and healthy individuals were extracted from resting-state EEG data. The introduction of a dual-template strategy makes a difference in the quality of microstate sequences. Quality features of microstate sequences were then extracted from four dimensions: Correlation, Explanation, Residual, and Dispersion. Subsequently, the concept of microstate semantic features was proposed, decomposing the microstate sequence into continuous sub-sequences. Specific semantic sub-sequences were identified by comparing the time parameters of sub-sequences. Results: The SCZ recognition test was performed on the public dataset for both the quality features and semantic features of microstate sequences, yielding an impressive accuracy of 97.2%. Furthermore, cross-subject experimental validation was conducted, demonstrating that the method proposed in this paper achieves a recognition rate of 96.4% between different subjects. Discussion: This research offers valuable insights for the clinical diagnosis of schizophrenia. In the future, further studies will seek to augment the sample size to enhance the effectiveness and reliability of this method.

11.
Inorg Chem ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655801

RESUMEN

The electrochemical nitrogen reduction reaction (eNRR) provides a sustainable green development route for the nitrogen-neutral cycle. In this work, bimetallic CoFe-MIL-88A with two active sites (Fe, Co) were immobilized on a 2D V2CTx MXene surface by in situ growth method to achieve the purpose of the control interface. A large number of heterostructures are formed between small CoFe-MIL-88A and V2CTx, which regulate the electron transfer between the catalyst interfaces. The adsorption and activation of nitrogen on the active sites were enhanced, and the NRR reaction kinetics was accelerated. CoFe-MIL-88A is tightly arranged on V2CTx, which makes CoFe-MIL-88A/V2CTx have better hydrophobicity and can significantly inhibit the hydrogen evolution reaction. The synergistic effect of multicatalytic active sites and multi-interface structure of CoFe-MIL-88A/V2CTx MXene is propitious to nitrogen efficiently and stably to convert into ammonia under environmental conditions with superior selectivity and good catalytic activity. The NH3 yield rate is 29.47 µg h-1 mgcat-1 at -0.3 V vs RHE, and the Faradaic efficiency (FE) is 28.86% at -0.1 V vs RHE. The catalytic mechanism was verified to conform to the distal pathway. This work will provide a new way to develop an MXene-based electrocatalyst for eNRR.

12.
Sci Total Environ ; 927: 172010, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575020

RESUMEN

Climate change and human activity are essential factors affecting marine biodiversity and aquaculture, and understanding the impacts of human activities on the genetic structure to increasing high temperatures is crucial for sustainable aquaculture and marine biodiversity conservation. As a commercially important bivalve, the Manila clam Ruditapes philippinarum is widely distributed along the coast of China, and it has been frequently introduced from Fujian Province, China, to other regions for aquaculture. In this study, we collected four populations of Manila clams from different areas to evaluate their thermal tolerance by measuring cardiac performance and genetic variations using whole-genome resequencing. The upper thermal limits of the clams showed high variations within and among populations. Different populations displayed divergent genetic compositions, and the admixed population was partly derived from the Zhangzhou population in Fujian Province, implying a complex genomic landscape under the influence of local genetic sources and human introductions. Multiple single nucleotide polymorphisms (SNPs) were associated with the cardiac functional traits, and some of these SNPs can affect the codon usage and the structural stability of the resulting protein. This study shed light on the importance of establishing long-term ecological and genetic monitoring programs at the local level to enhance resilience to future climate change.


Asunto(s)
Acuicultura , Bivalvos , Animales , China , Bivalvos/genética , Bivalvos/fisiología , Cambio Climático , Polimorfismo de Nucleótido Simple , Adaptación Fisiológica/genética
13.
ACS Omega ; 9(13): 15339-15349, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585104

RESUMEN

As the pathogenesis of cerebral small vessel disease with cognitive impairment (CSVD-CI) remains unclear, identifying effective biomarkers can contribute to the clinical management of CSVD-CI. This study recruited 54 healthy controls (HCs), 60 CSVD-CI patients, and 57 CSVD cognitively normal (CSVD-CN) patients. All participants underwent neuropsychological assessments and multimodal magnetic resonance imaging. Macrophage migration inhibitory factors (MIFs) were assessed in plasma. The least absolute shrinkage and selection operator model was used to determine a composite marker. Compared with HCs or CSVD-CN patients, CSVD-CI patients had significantly increased plasma MIF levels. In CSVD-CI patients, plasma MIF levels were significantly correlated with multiple cognitive assessment scores, plasma levels of blood-brain barrier (BBB)-related indices, white matter hyperintensity Fazekas scores, and the mean amplitude of low-frequency fluctuation in the right superior temporal gyrus. Higher plasma MIF levels were significantly associated with worse global cognition and information processing speed in CSVD-CI patients. The composite marker (including plasma MIF) distinguished CSVD-CI patients from CSVD-CN and HCs with >80% accuracy. Meta-analysis indicated that blood MIF levels were significantly increased in CSVD-CI patients. In conclusion, plasma MIF is a potential biomarker for early identification of CSVD-CI. Plasma MIF may play a role in cognitive decline in CSVD through BBB dysfunction and changes in white matter hyperintensity and brain activity.

14.
Front Neurol ; 15: 1304524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585365

RESUMEN

Background: Endovascular treatment of severe intracranial atherosclerotic stenosis (ICAS) using coronary drug-eluting stents (DESs) significantly reduces the risk of in-stent restenosis (ISR) and stroke recurrence. However, there are few reports regarding the treatment of ICAS with intracranial dedicated DES. Herein, we present our experience with the feasibility, safety, and medium-term follow-up outcomes of a novel intracranial DES, named NOVA stent, in patients with symptomatic severe ICAS (≥70%). Methods: From December 2021 to May 2022, patients with symptomatic severe ICAS who underwent implantation of the NOVA stent in our institution were retrospectively analyzed for procedural results, perioperative complications, imaging and clinical follow-up outcomes. Results: Twenty-four patients, 16 (66.7%) with anterior circulation lesions and 8 (33.3%) with posterior circulation lesions, were enrolled. All patients with intracranial ICA (n = 6), middle cerebral artery (n = 10), basilar artery (n = 3), intracranial vertebral artery (n = 3), and the vertebrobasilar junction (n = 2) stenosis were treated successfully using NOVA stents. The severity of stenosis ranged from 75 to 96% (mean 85.9%) before treatment and this was reduced to 0 to 20% (mean 8.6%) immediately after stent placement. Symptomatic distal embolism occurred in one case; however, there were no other perioperative complications. The mean follow-up duration was 12.2 ± 1.06 months. No symptomatic ischemic events occurred during follow-up. Follow-up cerebral angiography was performed in 22 of 24 patients (91.7%), and significant ISR occurred in one patient (4.2%). Conclusion: Our results demonstrate that implantation of the novel intracranial DES NOVA in severe ICAS is feasible, safe, and effective in selected cases, reducing the incidence of ISR, and showing excellent midterm clinical outcomes, providing a promising option for ICAS treatment.

15.
Cancer Sci ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38590234

RESUMEN

Recent studies have highlighted the pivotal roles of T cell transcription factors TCF-1 and TOX in modulating the immune response in cancer, with TCF-1 maintaining CD8+ T cell stemness and TOX promoting T cell exhaustion. The prognostic significance of these factors in lung adenocarcinoma (LUAD) remains a critical area of investigation. The retrospective study included 191 patients with LUAD who underwent surgery, of whom 83% were in stages II and III. These patients were divided into exploratory (n = 135) and validation (n = 56) groups based on the time of diagnosis. Multiplex fluorescence immunohistochemistry was used to examine the infiltration levels of CD8+ T cells, TCF1+ CD8+ T cells, and TOX+ CD8+ T cells. The percentage of CD8+ T cells in tumor was markedly lower than that in stroma (p < 0.05). In tumor-draining lymph nodes (TDLNs) invaded by tumor, the proportion of stem-like TCF1+ CD8+ T cells was significantly decreased (p < 0.01). Importantly, higher infiltration levels of CD8+ T cells and TCF1+ CD8+ T cells were associated with improved disease-free survival (DFS) (p = 0.009 and p = 0.006, respectively) and overall survival (OS) (p = 0.018 and p = 0.010, respectively). This study underscores the potential of TCF1+ CD8+ T cells as prognostic biomarkers in LUAD, providing insights into the tumor immune microenvironment and guiding future therapeutic strategies.

16.
J Org Chem ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621144

RESUMEN

An unprecedented protocol has been developed for the synthesis of 3,4-heterocycle-fused coumarins from 4-aminocoumarins and aurones through iodine-catalyzed cascade reactions. Dihydropyridine-fused coumarin, pyridine-fused coumarin, and pyrrole-fused coumarin derivatives were achieved in good yields with high selectivity when CH3CN, AcOH, and DMSO were used as the solvent, respectively. This protocol provides several advantages, such as easily available starting materials, high atom economy, friendly environment, and simple procedure.

18.
Neuroscience ; 546: 157-177, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574797

RESUMEN

Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1ß and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.

19.
Front Hum Neurosci ; 18: 1377233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601801

RESUMEN

Introduction: To investigate the brain's cognitive process and perceptual holistic, we have developed a novel method that focuses on the informational attributes of stimuli. Methods: We recorded EEG signals during visual and auditory perceptual cognition experiments and conducted ERP analyses to observe specific positive and negative components occurring after 400ms during both visual and auditory perceptual processes. These ERP components represent the brain's perceptual holistic processing activities, which we have named Information-Related Potentials (IRPs). We combined IRPs with machine learning methods to decode cognitive processes in the brain. Results: Our experimental results indicate that IRPs can better characterize information processing, particularly perceptual holism. Additionally, we conducted a brain network analysis and found that visual and auditory perceptual holistic processing share consistent neural pathways. Discussion: Our efforts not only demonstrate the specificity, significance, and reliability of IRPs but also reveal their great potential for future brain mechanism research and BCI applications.

20.
Materials (Basel) ; 17(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38591593

RESUMEN

To solve problems in dissimilarly light metal joints, refilled friction stir spot welding (RFSSW) is proposed instead of resistance spot welding. However, rotation speed, dwell time, plunge depth, and the diameter of welding tools all have a great influence on joints, which brings great challenges in optimizing welding parameters to ensure their mechanical properties. In this study, the 1.5 mm thick 2A12Al and 2 mm thick 7B04Al lap joints were prepared by Taguchi orthogonal experiment design and RFSSW. The welding tool (shoulder) diameters were 5 mm and 7 mm, respectively. The macro/microstructures of the cross-section, the geometrical characteristics of the effective welding depth (EWD), the stir zone area (SZA), and the stir zone volume (SZV) were characterized. The shear strength and failure mode of the lap joint were analyzed using an optical microscope. It was found that EWD, SZA, and SZV had a good correlation with tensile-shear force. The optimal welding parameters of 5 mm diameter joints are 1500 rpm of rotation speed, 2.5 mm of plunge depth, and 0 s of dwell time, which for 7 mm joints are 1200 rpm, 1.5 mm, and 2 s. The tensile-shear force of 5 mm and 7 mm joints welded with these optical parameters was 4965 N and 5920 N, respectively. At the same time, the 5 mm diameter joints had better strength and strength stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...